7 research outputs found

    ASAP Water Satisfaction Index

    Get PDF
    This technical report describes the Water Satisfaction Index model that used in the ASAP (Anomaly hotSpots of Agricultural Production) early warning system.JRC.D.5-Food Securit

    Irrigation and irrigated agriculture potential in the Sahel: The case of the Niger river basin.

    Get PDF
    The report assesses the potential of developing irrigation in the Niger River Basin under various agricultural scenarios accounting for biophysical and socio-economic variables, and for expected climate change. Irrigation potential is assessed in two parts. The first reviews recent literature in English and French (2010 onwards) on sustainable irrigation potential in the Sahel (i.e. Lake Chad basin, Niger, Senegal Volta River basins). Sahel agriculture possesses a significant irrigation potential. However, estimates fluctuate greatly depending on the scale of irrigation schemes, whether the resource is surface or ground water, expected and actual irrigation costs but also on determinants of success of irrigation schemes, including the varying effects when interacting with other inputs, such as fertilisers. Past, and not always successful, efforts were based on large public irrigation schemes (i.e. river dams and related canals). In a growing number of contexts, investments in small and micro-irrigation systems are identified as more desirable than conventional large schemes. Existing small-scale irrigation systems in the region are known to be developing however limited systematised evidence exists. The realisation of this potential is very sensitive to the costs of irrigation, among the highest in the world, with some technologies more sensitive than others (i.e. small river diversions). Moreover, irrigation potential is influenced by synergies among irrigation and other agricultural production technologies – it is maybe worthwhile to recall that irrigation potential is not a static concept, but it is contingent on levels of other inputs. Hence, irrigation investments need to be put in the broader context of productivity enhancement, rural development efforts and global changes such as urbanisation The development of irrigation in the Sahel and in the Niger River basin in particular is a key intervention area for agriculture and development policy in general. Current policy identifies irrigation development as an instrument fostering food security. However, from the angle of optimization, rainfed agriculture retains the larger potential for development when looking at costs and overall potential profits. Moreover, support to the development of irrigated agriculture needs to be fully integrated with a relevant and adapted support to agriculture in general, particularly with regards to how it mitigates risk. Access to irrigation is expected to expand farmers' production opportunities. It mitigates production risks, even in low quantities as crop-saving irrigation. By reducing risk, it encourages farmers to make more intensive use of inputs and land. Moreover, this dynamic effect is also influenced by the type of irrigation systems accessed. For example, the literature has identified that farmers which have some off-farm income are particularly interested in investing in agriculture if irrigation is made available, whereas other groups may be interested in improving first their access to credit for farm inputs with then a view on irrigation. How production risks are perceived need to be clearly identified so that the irrigation systems fostered can be seen as risk-reducing Functioning supply chains would also make irrigation more profitable as they reduce losses of potentially more valuable products from irrigated agriculture and enhance market access. Recently, registered regional increases in groundwater storage have been associated to diffuse recharge, partially compensating for groundwater withdrawal associated with irrigation development. Hence, hinting at some level of sustainability in the use of groundwater for small-scale irrigation in the Sahel, despite the risks associated with salinization. The second part focuses on the Niger Basin to assess and quantify its irrigation potential through modelling. The model uses static biophysical and socio-economic indicators in model optimising profits of mainly small holder farms under 4 possible agricultural scenarios with distinctive productivity levels. In general, the projected irrigated area does not evolve much between scenarios mainly because of high productions costs associated with increased irrigation. Although irrigation potential is theoretically large, investing in both irrigated and rainfed input intensification offers the largest potential gains. The results for total irrigation potential in terms of farmed area are in the range of 0.6-09M hectares, from the estimated current 0.53M hectares of irrigated land under the most productive scenario in terms of agricultural yields. However, even the most yielding scenario results of the current study are significantly lower than previous estimates developed in the literature, and depend on assumed irrigation and input costs. The specific strengths of this new estimation are that of using input costs from recent agricultural surveys (i.e. LSMS-ISA) along with crop suitability maps. Its main limitation is that is does not distinguish between irrigation technologies and related costs, constraining estimates to a generic (gravity) irrigation. In turn, the expansion of agriculture is exogenously determined and does not depend upon the variables analysed.JRC.D.4-Economics of Agricultur

    Agricultural biomass as provisioning ecosystem service: quantification of energy flows

    Get PDF
    Agro-ecosystems supply provisioning, regulating and cultural services to human society. This study focuses on the agro-ecosystem provisioning services regarding the production of agricultural biomass. These services strongly respond to the socio-economic demands of human beings, and are characterised by an injection of energy in the ecosystems production cycle which is often exceeding the ecological capacity of the ecosystem, i.e. the overall ability of the ecosystem to produce goods and services linked to its bio-physical structure and processes that take place during the agricultural production. Agricultural production is identified as ecosystem service in widely recognised ecosystem service frameworks, but currently there is no clear agreement within the scientific and policy communities on how the ecological-socio-economic flow linked to this provisioning service should be assessed, beyond a mere accounting of yields. This study attempts to provide a new insight to this issue by proposing an approach based on the energy budget, which takes into consideration the energy needed by the ecosystem to supply the service. The approach is based on the concepts of Energy Return on Investment (EROI) and Net Energy Balance (NEB), and considers different bio-physical structures and processes of agro-ecosystems. The work is structured in three parts: the first aims at estimating inputs (machinery, seeds, fertilizers, irrigation, labour) in energy terms; the second at estimating biomass output in energy terms; the third to compare actual agricultural production with three reference scenarios encompassing a range of human input (no input – low input – high input scenarios). Results show that in general terms cereal and grassland systems have the largest energy gains (both in terms of EROI and NEB). Such systems are characterised by a lower economic value of their output compared to other producing systems such as fruits, which have lower energy gains but a higher embodied energy, which is recognized in the market as valuable. Comparison of actual production systems with the high input scenario confirms that current production in Europe is already highly intensive, and that increasing the energy input would not improve the efficiency of the conversion of such additional energy into biomass. Overall, the proposed approach seems a useful tool to identify which are the factors in the agricultural production process that could be modified to improve the energy efficiency in agricultural systems and the sustainability of their production. This study can be considered as a first step in the assessment of the total energy balance of the agro-ecosystem. In fact it deals with the quantification of energy regarding human inputs and the corresponding output and further analysis should address crucial issues such as the quality of the energy and the embodied energy in the plant production, which will help to understand the full complexity of the agro-ecosystemJRC.H.4-Monitoring Agricultural Resource

    25 years of the WOFOST cropping systems model

    No full text
    The WOFOST cropping systems model has been applied operationally over the last 25 years as part of the MARS crop yield forecasting system. In this paper we provide an updated description of the model and reflect on the lessons learned over the last 25 years. The latter includes issues like system performance, model sensitivity, spatial model setup, parameterization and calibration approaches as well as software implementation and version management. Particularly for spatial model calibrations we provide experience and guidelines on how to execute calibrations and how to evaluate WOFOST model simulation results, particularly under conditions of limited field data availability. As an open source model WOFOST has been a success with at least 10 different implementations of the same concept. An overview is provided for those implementations which are managed by MARS or Wageningen groups. However, the proliferation of WOFOST implementations has also led to questions on the reproducibility of results from different implementations as is demonstrated with an example from MARS. In order to certify that the different WOFOST implementations and versions available can reproduce basic sets of inputs and outputs we make available a large set of test cases as appendix to this publication. Finally, new methodological extensions have been added to WOFOST in simulating the impact of nutrients limitations, extreme events and climate variability. Also, a difference is made in the operational and scientific versions of WOFOST with different licensing models and possible revenue generation. Capitalizing both on academic development as well as model testing in real-world situations will help to enable new applications of the WOFOST model in precision agriculture and smart farming

    25 years of the WOFOST cropping systems model

    No full text
    The WOFOST cropping systems model has been applied operationally over the last 25 years as part of the MARS crop yield forecasting system. In this paper we provide an updated description of the model and reflect on the lessons learned over the last 25 years. The latter includes issues like system performance, model sensitivity, spatial model setup, parameterization and calibration approaches as well as software implementation and version management. Particularly for spatial model calibrations we provide experience and guidelines on how to execute calibrations and how to evaluate WOFOST model simulation results, particularly under conditions of limited field data availability. As an open source model WOFOST has been a success with at least 10 different implementations of the same concept. An overview is provided for those implementations which are managed by MARS or Wageningen groups. However, the proliferation of WOFOST implementations has also led to questions on the reproducibility of results from different implementations as is demonstrated with an example from MARS. In order to certify that the different WOFOST implementations and versions available can reproduce basic sets of inputs and outputs we make available a large set of test cases as appendix to this publication. Finally, new methodological extensions have been added to WOFOST in simulating the impact of nutrients limitations, extreme events and climate variability. Also, a difference is made in the operational and scientific versions of WOFOST with different licensing models and possible revenue generation. Capitalizing both on academic development as well as model testing in real-world situations will help to enable new applications of the WOFOST model in precision agriculture and smart farming.</p

    Improving WOFOST model to simulate winter wheat phenology in Europe: Evaluation and effects on yield

    No full text
    This study describes and evaluates improvements to the MARS crop yield forecasting system (MCYFS) for winter soft wheat (Triticum aestivum) in Europe, based on the WOFOST crop simulation model, by introducing autumn sowing dates, realistic soil moisture initialization, adding vernalization requirements and photoperiodicity, and phenology calibration. Dataset of phenological observations complemented with regional cropping calendars across Europe is used. The calibration of thermal requirements for anthesis and maturity is done by pooling all available observations within European agro-environmental zones and minimizing an objective function that combines the differences between observed and simulated anthesis, maturity and harvest dates. Calibrated phenology results in substantial improvement in simulated dates of anthesis with respect to the original MCYFS simulations. The combined improvements to the system result in a physically more plausible spatial distribution of crop model indicators across Europe. Crop yield indicators point to better agreement with recorded national winter wheat yields with respect to the original MCYFS simulations, most pronounced in central, eastern and southern Europe. However, model skill remains low in large parts of western Europe, which may possibly be attributed to the impacts of wet conditions.JRC.D.5-Food Securit
    corecore